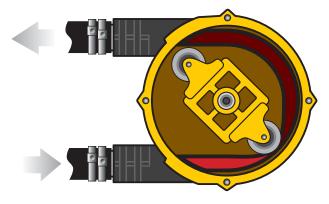


Vector Peristaltic Pump Operating Principle

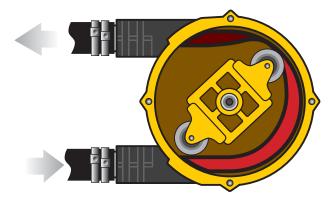
Peristaltic pumps work by compressing and relaxing a hose positioned between a rotating device and a circular pump housing. Vector 2000 Series pumps use rotating rollers that provide the same "push" with far less hose wear.

The peristaltic method employed in Vector pumps can create 100% compression at all times. As a result, there is virtually no slipping. Metering is highly accurate. Up to 29-1/2 feet of suction lift is produced.

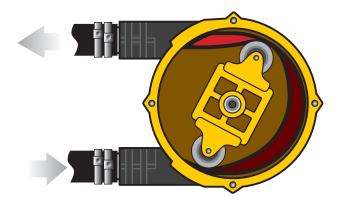
Despite this powerful pumping action, Vector pumps will not cause frothing or delicate emulsions to break up. Since fluids travel through a single hose, they never come into contact with moving valves, springs, or seals. This makes Vector pumps ideal for handling abrasive, shear-sensitive, or corrosive fluids. Dyes, thick fluids, and solids up to 3-1/2 inches (90 mm) are also readily pumped.



Superior Roller Design



Vector uses an evolutionary roller mechanism instead of a rigid shoe to push fluids through its hose. This ensures longer working life with less downtime for maintenance.


The rollers generate less friction than shoes, extending hose life and reducing downtime.

Fluid positioned ahead of the rollers gets pushed forward as the rollers rotate inside of the case.

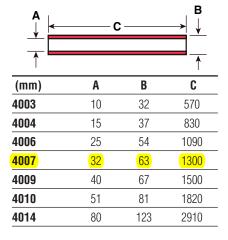
Meanwhile, the portion of the hose just behind the rollers rebounds to create a vacuum.

The vacuum draws fluid into the pumping hose, which is then pushed forward by the rollers.

Vector Pumps Hose Data (4000 Series)

Construction

Fiber Braided:


1500-2000 hours Typical Life at 30 rpm Preferred when:

- Pumping fluids with abrasives
- The pump is required to create a strong vacuum
- High pressures are required

Operating Duty

Intermittent:	Higher pressures and
	higher pump speed
Continuous:	Low pressures and
	lower speed

Dimensions

Hose Identification

Fiber Braided (Polyamide) 2 to 6 Layers	Code	9
Natural Rubber	MF	White stripe
NBR, Oil-rated	BF	Yellow stripe
Nitrile Rubber Food Grade (NBR-F)	YF	White & yellow stripe
EPDM	EF	Red stripe
Hypalon	HF	Blue stripe

Material	Operating Temperatures	Industry Approvals
Natural Rubber	68°F to 176°F (20°C to 80°C)	
NBR	50°F to 176°F (10°C to 80°C)	
NBR Food Grade	50°F to 176°F (10°C to 80°C)	Meets FDA Criteria
EPDM	68°F to 176°F (20°C to 80°C)	
Hypalon	68°F to 176°F (20°C to 80°C)	

ATTENTION!

When operating within 15°F (9.4°C) of maximum hose temperature, do not exceed 20 rpm pump speed. In addition, metal inspection plate is required vs. clear plastic material.

Vector Pumps Selection Guidelines (4000 Series)

1. Collect application information

Fluid:			
Discharge Pr	ess:		psig
Suction Cond	lition:		
Lift:			feet
or Vacu	um:		inches of Hg
or Floo	ded:		feet of fluid above pump
or Pres	surized:		psig
Flow or Flow	Range:		gpm
Temperature	(°F): Min:	Max:	Normal:
Solids?, desc	ribe:		
Solid S	ize:		
Solid L	ength:		
Solids	%:		
Viscosity at T	emp:		
Vapor Pressu	re at Temp:		
Specific Grav	ity:		
Duty Cycle (h	nrs/day):		
Motor Enclos	ure:		
Hertz:	50	60	
Volts:			
Phase:	1	3	
Motor eff:	Std	High	Inverter Duty
Variable Freq	uency Drive:	Yes	No
If yes, v	vhat environment w	ill controller b	e mounted:
Insid	le another panel	Dry, fa	airly dust free
Dust	y area	Wet a	rea
	h down area		
	rdous area		class and group
If Yes. i	nnut voltage: 1	120	230 460

2. Determine the maximum roller speed

Duty Cycle (hours/day) of operation

• See pump performance graphs

Viscosity of the fluid

- < 200 cps: no speed correction needed
- 200-1000 cps: max. speed 40 rpm
- 1,000-5000 cps: max. speed 30 rpm; use flooded/pressurized suction
- 5,000-10,000 cps: max. speed 20 rpm; use flooded/pressurized suction
- 10,000-15,000 cps: max. speed 10 rpm; use flooded/pressurized suction

Note: With viscosities over 200 cps it is very important to oversize the suction line 1-1/2 to 2 times the pump connector size and to keep suction lines as short as possible.

Temperature of the fluid: If the fluid temperature pumped is within 15° F (9.4°C) of the maximum temperature rating of the hose, contact factory and select a pump with a maximum speed of 20 rpm.

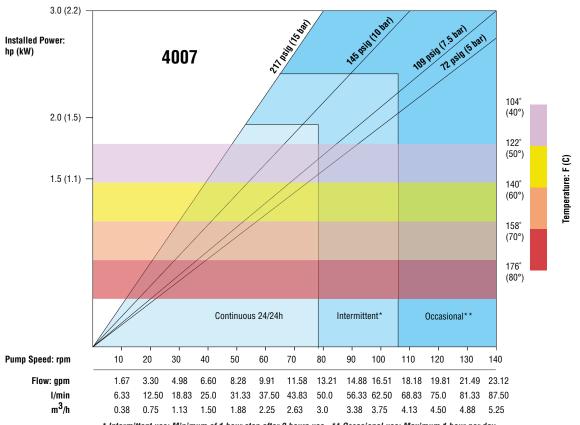
3. Pump Selection

 Select pump that can deliver the required flow based on the maximum roller speed and discharge pressure required by the application.

Note: It may be required to select a larger pump if solids are larger than the maximum size the pump can handle.

4. Hose Selection

Hose selection based on chemical compatibility and temperature.


5. Connector Type and Material Selection

6. Drive Selection

MODEL 4007 PUMP DATA

Performance

* Intermittent use: Minimum of 1 hour stop after 2 hours use ** Occasional use: Maximum 1 hour per day

Fluid Characteristics

Viscosity:	100,000 cps max.
Liquid Temperature:	180°F (82°C) max.
Solid Size:	(see page 4)
Fiber Length:	7-7/8 inch (300 mm) max.

Materials of Construction

Casing:Ductile IronRotor:Ductile IronShoes:AluminiumFrame:Steel

Cover: Electroplated Steel

Casing O-ring Seal: Nitrile

Hose Materials: NR/NBR/EPDM/Hypalon

Specifications

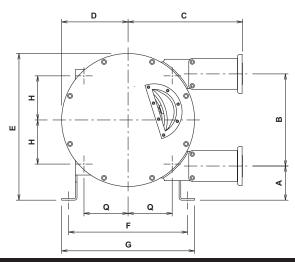
218 psig (15 bar) max.
29.5 ft (9 m) max.
21.8 psig (1.5 bar) max.
4 ft
3.0 max.
32 x 63 x 1300 mm
0.165 gal/rev
2.64 qts (2.5 L)
Glycerine / Glycol
194 lbs. (88 kg)
287 lbs. (130 kg)

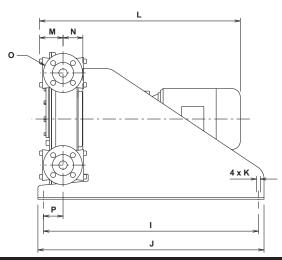
^{*} Pumps are shaft driven and require a gearbox and motor. See Ordering Information on following page for details.

Click Here For Your Free Quote

Model 4007 Ordering Information

A complete Vector pump order number uses a 10-character order code to identify the desired hose, fittings and drive. Select the appropriate items from the chart below and use the order code from each group to complete the pump assembly order number.


1	2	3	4		5	6		7	8		9	10
4	0	0	7	-			-			-		


Order	Order	
Digit	Code	Description
1-4		Pump Designation
	4007	Model 4007 Shaft Drive Pump
5-6		Hose Material (fiber-braided)
	MF	Natural Rubber
	BF	NBR, Oil-rated
	EF	EPDM
	HF	Hypalon
7-8		Connector Material/Style
	BB	316 SST insert w/ 316 SST 1-1/2" 150 Lb ANSI flange
	PP	Polypropylene insert w/ 316 SST 1-1/2" 150 Lb ANSI flange
	MM	PVDF insert w/ 316 SST 1-1/2" 150 Lb ANSI flange

				•		9
9-10		Drive				
		Flow	Gear	Pump	Max	
		GPM	Ratio	RPM	Psig	BHP
		3Ø, TE	FC, 230/46	O VAC, 60 H	z	
		4:1 Inv	erter Duty	Turndown		
	B2	3.1	93:1	19	217	1.5
	D2	5.3	54:1	32	217	2
	F2	7.4	39:1	45	217	3
	H2	10.4	28:1	63	217	3
	J2	14.3	20:1	87	140	3
	K2	16.5	17:1	100	140	3

Dimensional Drawings

See Ordering Information for motor and gearbox sizes.

	Α	В	C	D	E	F	G	Н	- 1	J	K	M	N	0	P	Q
Inches	4.8	13.0	17.2	9.4	20.7	16.8	18.7	6.2	30.3	31.9		3.3	3.5	1.5" 150 lb	3.6	6.2
mm	122.5	330	435.5	238	525.5	426	476	157.75	770	810	4xø13	83	89	ANSI	91	157.75